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3CIRAD, UMR “Systèmes d’Elevage en Milieux Méditerranéens et Tropicaux”, Kourou,
French Guiana

Received: 15 April 2013 – Accepted: 25 April 2013 – Published: 16 May 2013

Correspondence to: F. Wagner (fabien.wagner@ecofog.gf)

Published by Copernicus Publications on behalf of the European Geosciences Union.

8247

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/8247/2013/bgd-10-8247-2013-print.pdf
http://www.biogeosciences-discuss.net/10/8247/2013/bgd-10-8247-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 8247–8281, 2013

Asynchronism in leaf
and wood production

in tropical forests

F. Wagner et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

The fixation of carbon in tropical forests mainly occurs through the production of wood
and leaves, both being the principal components of net primary production. Currently
field and satellite observations are independently used to describe the forest carbon
cycle, but the link between satellite-derived forest phenology and field-derived forest5

productivity remains opaque. We used a unique combination of a MODIS EVI dataset,
a climate-explicit wood production model and direct litterfall observations at an intra-
annual time scale in order to question the synchronism of leaf and wood production
in tropical forests. Even though leaf and wood biomass fluxes had the same range
(respectively 2.4±1.4 MgCha−1 yr−1 and 2.2±0.4 MgCha−1 yr−1), they occured sepa-10

rately in time. EVI increased with the magnitude of leaf renewal at the beginning of the
dry season when solar irradiance was at its maximum. At this time, wood production
stopped. At the onset of the rainy season when new leaves were fully mature and water
available again, wood production quickly increased to reach its maximum in less than
a month, reflecting a change in carbon allocation from short lived pools (leaves) to long15

lived pools (wood). The time lag between peaks of EVI and wood production (109 days)
revealed a substantial decoupling between the irradiance-driven leaf renewal and the
water-driven wood production. Our work is a first attempt to link EVI data, wood pro-
duction and leaf phenology at a seasonal time scale in a tropical evergreen rainforest
and pave the way to develop more sophisticated global carbon cycle models in tropical20

forests.

1 Introduction

Tropical forests have a primordial role in the terrestrial carbon (C) cycle. On one hand,
55 % of the total forest C stocks are stored in live biomass, deadwood, litter and soil
of tropical areas (471±93 PgC). On the other hand, carbon sequestration in tropical25

intact forests represents about half (1.19±0.41 PgC yr−1 for the period 1990–2007 Pan
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et al., 2011; Baccini et al., 2012) of the total sink in global established forest. Most car-
bohydrates are produced by photosynthesis in leaves and redistributed to plant tissues
or lost during chemical processes such as respiration (Kozlowski, 1992). Accumula-
tion of carbohydrates in woody tissues during secondary growth constitutes the main
component of carbon sequestration in trees. Tree growth occurs in two ways. Primary5

growth corresponds to the length extension of shoots from the apical meristems, where
the leaves grow, and to root development. Secondary growth gathers all the biological
mechanisms behind cambial activity and stem growth in thickness (Kozlowski, 1992).
In this paper, we will use seasonal tree diameter growth as a proxy of seasonal varia-
tions in wood production and leaf phenology to assess leaf production, extension and10

fall. Wood and leaf production are the main components of net primary production and
constitute the long lived pool (wood) and the short lived pool (leaves) of carbon in the
trees (Malhi and Grace, 2000; Malhi et al., 2011). We will study their seasonality and
the temporal decoupling between them.

Seasonality of leaf phenology in tropical rainforests has been observed either from15

(i) field measurements of litterfall and leaf production (Chave et al., 2010; Zalamea and
Gonzalez, 2008; Bonal et al., 2008; Sabatier and Puig, 1986) or (ii) satellite data (Huete
et al., 2006; Asner et al., 2000, 2004; Caldararu et al., 2012; Pennec et al., 2011).
The latter studies characterize leaf phenology through variations in different vegetation
indices, i.e. Leaf Area Index (LAI), Normalized Difference Vegetation Index (NDVI) or20

Enhanced Vegetation Index (EVI) (Justice et al., 1998). These indices are computed
based on measurements of surface reflectance by sensors embarked on satellites.
The drivers of leaf phenology in tropical rainforests are still studied, but recent results
suggest that irradiance is the main driver throughout Amazonia (Bradley et al., 2011).
Flushes of new leaves with increased photosynthesis capacity were observed in the25

heart of the dry season and closely coincided with seasonal peaks in solar irradiance
(Myneni et al., 2007; Brando et al., 2010; Huete et al., 2006; Saleska et al., 2003;
Caldararu et al., 2012; Wright and Vanschaik, 1994; De Weirdt et al., 2012).
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Seasonal rhythms of secondary growth, i.e. wood production, in tropical forests have
been highlighted in most long-term permanent plots (Nepstad et al., 2002; Stahl et al.,
2010; Wagner et al., 2012), even under very stable climate conditions (O’Brien et al.,
2008; Clark et al., 2010). This seasonality is obviously linked to the intra-annual vari-
ation of cambial activity that has been reported in various environments, from dry5

(Worbes, 1999; Enquist and Leffler, 2001; Lisi et al., 2008) to flooded forests (Schon-
gart et al., 2002), but also in more mesic environmental conditions (Fichtler et al., 2003;
Clark et al., 2010). Most current studies performed in tropical rainforests have high-
lighted three major climate drivers of secondary growth: rainfall, solar irradiance and
air temperature. (i) Rain or lack of rain is often implicitly viewed as the main driver of10

rainforest dynamics (Phillips et al., 2009), as annual net primary production (NPP) gen-
erally positively correlates with the annual amount of precipitation (Tian et al., 1998).
Recently, Wagner et al. (2012) showed that rainfall seasonality plays a key role in the
forest’s response to climate variability. (ii) Irradiance is obviously directly linked to plant
photosynthetic capacity, in turn driving carbon uptake and plant growth (Graham et al.,15

2003). (iii) Recent studies suggest that tropical tree mortality may increase significantly
with increasing night-time temperature, while seasonal tree growth appears surpris-
ingly very sensitive to 1–2 ◦C variations in mean annual night-time temperature (Clark
et al., 2010). Some works suggest that reductions in photosynthetic rate may occur at
temperatures above 30 ◦C and are driven by reductions in stomatal conductance in re-20

sponse to higher leaf-to-air vapour pressure deficits (Lloyd and Farquhar, 2008), rather
than by a direct down regulation of biochemical processes during CO2 fixation.

Few studies have simultaneously analyzed the diverse components of net primary
production in tropical forests and the dynamics of non-structural carbohydrates (NSC)
(Wurth et al., 2005; Rocha, 2013). In Panama, higher NSC concentrations were found25

across all species and organs in the dry season (Wurth et al., 2005). This increase
was attributed to drought-constrained growth, the photosynthesis being less impeded
than tree growth by drought. In French Guiana, carbohydrates production was more
variable at times as photosynthesis decreased in the dry season (Stahl et al., 2013).
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Very recently, significant advances in understanding tree growth and within-tree C cy-
cling have been made in temperate forests (Richardson et al., 2013). NSC were found
to be both highly dynamic and about a decade old. A two-pool (fast and slow cycling
reserves) model structure gave reasonable estimates of the size and mean residence
time of the total NSC while greatly improving model predictions of inter-annual variabil-5

ity in woody biomass increment.
While field measurements of productivity, reported as biomass gain or growth in di-

ameter at breast height (DBH), showed an increase in the wet season (Wagner et al.,
2012; Grogan and Schulze, 2012; Nepstad et al., 2002; Clark et al., 2010), satellite
measurements of productivity, reported in terms of increasing canopy photosynthetic10

capacity, were correlated with leaf production and peaked in the dry season (Huete
et al., 2006; Brando et al., 2010; Anderson, 2012). In this study, we use a unique
combination of three independent datasets to resolve this apparent absence of syn-
chronism in leaf and wood production in tropical forests. First, 3 yr of intensive field
measurements of diameter growth of 256 tropical trees were used to calibrate a wood15

production model. Next, litter production was surveyed every 25 days in the same pe-
riod in the same forest area. Finally, leaf production was estimated using EVI data from
the Modis sensor of the satellite Terra. We hypothesized that this apparent paradox
of biomass productivity in tropical forests reflects a time overlap in the use of carbo-
hydrates in tropical trees. We addressed two specific questions: (i) whether field and20

satellite data converge in describing the biological functioning of tropical forests, and
(ii) how these two sources of information explained seasonal variations in tropical for-
est productivity. To our knowledge, this study is the first attempt to link leaf phenology,
wood production and EVI data at a seasonal time scale.
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2 Methods

2.1 Field data

Seasonal changes in trunk circumference were monitored in 256 trees from 74 species
using home-made steel dendrometer bands, distributed in 3 inventory plots (Stahl et al.,
2010; Wagner et al., 2012) in Paracou, French Guiana (5◦18′ N, 52◦23′ W), a lowland5

tropical rainforest (Gourlet-Fleury et al., 2004). Changes in trunk circumference were
censused every c. 40 days from 2007 to 2010 (mean= 39, sd= 19.8). Trunk bark thick-
ness has been measured on 255 of the 256 studied trees (methods described in Stahl
et al., 2010). In the same 3 inventory plots, 12 litter traps (0.67 m×0.67 m= 0.45 m2)
were placed 1.5 m above the ground at each corner of each plot. Trap contents were10

collected every 25 days on the same day and ovendried at 60 ◦C for 3 days until con-
stant weight before being weighed to the nearest 0.1 g (Bonal et al., 2008).

2.2 Satellite data

We used Enhanced Vegetation Index (EVI) satellite data from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) sensor onboard the satellite Terra (EOS AM,15

NASA) (Justice et al., 1998). Vegetation indices measure canopy greenness, a com-
posite property of canopy structure, leaf area, and canopy chlorophyll content (Myneni
et al., 1995). EVI is an index of canopy photosynthetic capacity (Huete et al., 2006).
We obtained EVI from the Global MOD13Q1 datasets provided every 16 days at 250 m
spatial resolution. The EVI maintains sensitivity even for high LAI canopies by rely-20

ing on near-infrared canopy reflectance, which is less prone to saturate with moderate
resolution pixels (Gao et al., 2000; Huete et al., 2002, 2006). We used all 16 day com-
posite EVI data from 4 January 2007 to 2 February 2011 included. In addition, we used
a typology of French Guiana forest defined from SPOT-4/VEGETATION product (Gond
et al., 2011) to analyze EVI variation between forest types. This typology is relied to25
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the data set from the VEGETATION sensor onboard the SPOT-4 satellite (1 km spatial
resolution).

2.3 Climate data

We used the CRU-TS3.1 and CRU-TS3.10.01 monthly climate datasets for the period
2007–2010 of the Climate Reseach Unit (CRU) at the University of East Anglia (Mitchell5

and Jones, 2005). These datasets are calculated on high-resolution grids (0.5×0.5◦),
which are provided by more than 4000 weather stations distributed around the world (4
in French Guiana). Here we used cloud cover (cld), precipitation (pre), daily mean, min-
imal and maximal temperatures (respectively tmp, tmn and tmx), vapour pressure (vap)
and potential evapotranspiration (pet). For the calculation of potential evapotranspira-10

tion (pet), the method used is the Food and Agricultural Organization’s (FAO) grass
reference evapotranspiration equation (Ekstrom et al., 2007; Allen et al., 1994). It is
a variant of the Penman Monteith method using the gridded tmp, tmn, tmx, vap and
cld. These data were estimated using linear approximation for the grid and the time
of the Modis image. Additionally, for the graphic representation, we used global radia-15

tion, mean temperature and relative extractable water (REW) measured or computed
at Paracou (details of the sensors and computation of REW in Wagner et al. (2012)
and Bonal et al., 2008). REW is a daily value between 0 and 1: when REW= 1, the
amount of extractable water by the tree is at its maximum, and when REW= 0, no wa-
ter is available for trees. Mean monthly temperature of CRU data have a coefficient of20

correlation of 0.962 with mean monthly temperature measured in Paracou.

2.4 Data analysis

2.4.1 Wood production versus stem hydration

Changes in tree circumference are commonly used to characterize seasonal or an-
nual variations in secondary growth. However, accelerated changes in circumference25
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increments during the onset of the wet season can be caused by bark swelling as
they become hydrated (Stahl et al., 2010). Similarly, bark shrinking during dry periods
can mask any secondary growth and even lead to negative growth increments (Stahl
et al., 2010). To disentangle the effect of climate seasonality vs. bark hydration on sec-
ondary growth and wood production, we compared the monthly biomass increments5

(see Eq. (2) for the computation of biomass from tree diameter) of two groups of trees
corresponding to the first and the last quantile of trunk bark thickness. Both groups
showed synchronous and highly correlated variations (Pearson correlation coefficient
of 0.80) in biomass increment (Fig. 1), suggesting that secondary growth is driven by
cambial activity.10

2.4.2 Modeling wood production

We converted measured changes in circumference into wood production using the
model of Molto et al. (2013). This model uses the diameter at breast height of the tree
i at the time t (DBHi ,t) to estimate the current height in meters (Hi ,t), Eq. (1).

log(Hi ,t) ∼ log(β1 × (DBHi ,t/(β2 +DBHi ,t))) (1)15

Where DBHi ,t is in cm, β1 = 40.3, β2 = 9.43. Then the wood production (AGBi ,t) was
computed using the estimated height (Ĥi ,t), the diameter (DBHi ,t) and the wood specific
gravity of the tree (WSGi ), Eq. (2).

log(AGBi ,t) ∼ β3 +β4 log(DBHi ,t)+β5 log(Ĥi ,t)+β6 log(WSGi ) (2)

Where DBHi ,t is in cm, Ĥi ,t is in m, β3 = −2.91, β4 = 2.19, β5 = 0.756, β6 = 0.187.20

For 158 of the studied trees, WSGi had been measured in a companion study (see
methods in Stahl et al., 2010). For the remaining 98 trees, we assigned the mean
WSG of its species from the data of Stahl et al. (2010). If the WSGi of the species was
still missing, then we used the databases from Baraloto et al. (2010) and Rutishauser
et al. (2010) to complete them.25
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The wood production at the time t (∆AGBi ,t) was computed as the difference of AGBi
between t and t−1. The mean wood production of our sampled population for each
time t was computed with the number of trees (nt) at the time t.

∆AGBi ,t = AGBi ,t −AGBi ,t−1

∆AGBparacou,t =

∑nt
i=1∆AGBi ,t

nt

(3)

5

We calibrated a monthly wood production model with the mean wood production of
our sampled population and the climate variable of the CRU dataset for the pixel of
Paracou in a linear framework. To match the time scale of the Modis data, climate data
and the mean wood production of Paracou (∆AGBparacou,t) were linearly interpolated to
the modis time m (∆AGBparacou,m).10

log(∆AGBparacou,m +1) ∼ α0 +α1 ×prem +α2 ×petm +α3 × tmpm +α4 × tmnm

+α5 × tmxm +α6 × cldm +α7 × vapm
(4)

Where ∆AGBparacou,m is the wood production for the modis time m, α0 is the intercept
of the model, α1,...,7 are the parameters of the climate drivers and the error of the model
assumed normal. We modelled the logarithm of growth instead of growth itself because15

our data showed a strong heteroscedasticity.
In a second step, we applied this model to predict the wood production (∆AGBp,m,

Eq. 5) for Modis pixel p with the CRU climate variable at the modis time m.

log(∆AGBp,m +1) ∼ α0 +α1 ×prep,m +α2 ×petp,m +α3 × tmpp,m +α4 × tmnp,m

+α5 × tmxp,m +α6 × cldp,m +α7 × vapp,m

(5)

2.4.3 Image processing20

Using MRTtools, EVI, VI Quality and pixel reliability were extracted from the Modis
MOD13Q1 granule in .hdf, resized to latitude of 2–6◦ N and longitude of −55 to −51◦ W,

8255

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/8247/2013/bgd-10-8247-2013-print.pdf
http://www.biogeosciences-discuss.net/10/8247/2013/bgd-10-8247-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 8247–8281, 2013

Asynchronism in leaf
and wood production

in tropical forests

F. Wagner et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

and converted to GeoTIFF images. On these images, we selected only the Modis pixels
containing forest, as defined by the five forest classes of Gond et al. (2011): low dense
forest, high forest with regular canopy, high forest with disrupted canopy, mixed high
and open forest, and open forest and Euterpe palm forest. We determined the validity
of each 16 day composite EVI value of a land pixel using the methodology used and5

described in Samanta et al. (2010, Auxiliary materials). The selection was made by
excluding Pixel Quality Flags, Clouds, Cloud Shadows, Aerosol Climatology and High
Aerosols. Pixels with the following quality flags were deemed “valid” (all other quality
flags were ignored). The “MODLAND QA” flag must be equal to 0 (good quality) or 1
(check other Quality Assessment flags, QA). “VI usefulness” flags must be equal to 1110

or less. “Adjacent cloud detected”, “Mixed clouds” and “Possible shadow” flag values
must be equal to 0. The “Aerosol quantity” flag must equal 1 (low aerosol) or 2 (average
aerosol).

We estimated the value of EVI for the pixels excluded in the previous selection,
EVIpexcluded,m,type. The estimation was made by assigning to the pixel missing an EVI15

value the mean EVI value of the n neighboor valid pixels of the same forest type (type)
in a square of side 40 km, weighted by the inverse distance (dist), Eq. (6).

EVIpexcluded,m,type =

∑n
i=1 EVIpvalid,m,type × (1/distn)∑n

i=1(1/distn)
(6)

2.4.4 Seasonality analysis

To detect, estimate and test seasonal patterns in the EVI time series, we used temporal20

regression models from the package R season (Barnett and Dobson, 2010). The model
is fitted using a sine and cosine term that together describes the sinusoid. These pa-
rameters are added to a generalized linear model to explain EVI data and test the exis-
tence of a seasonal pattern. The existence of a seasonal pattern was determined by the
zero-test based on Snedecor’s F statistic. We computed cross correlation coefficients25

between EVI, ∆AGBparacou,m, leaffall, global solar radiation, REW and temperature to
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determine the maximum correlation and lagged times between the times series. For
the construction of the time series, we used the mean of EVI and ∆AGB at each of
the Modis times, and all the variables were linearly approximated at a daily scale. The
level of statistical significance was computed by a bootstrap procedure. We randomly
reordered the values of one of the time series, computed and stocked the cross correla-5

tion coefficients and repeated this operation 1000 times. Then the cross correlations of
the original variable was compared to the distribution of the cross correlations with the
randomly reordered variable. The null hypothesis of uncorrelated original variables was
rejected at a level of 0.05 % if the cross correlation of the original variables was out-
side the (0.025, 0.975) quantiles of the empirical distribution of the randomly reordered10

cross correlations.
All analyses were performed using the R project software (http://www.r-project.org/).

3 Results

The wood production model did reproduce well the general trend of the data (R2 = 0.72,
RMSE= 0.385), Table 2. The modeled wood production showed a strong seasonality15

(Fig. 3a). At the beginning of the rainy season, wood production increased quickly.
However, production began to decline before the end of the wet season, in the middle
of July. A decline in wood production was observed during the transition between the
wet and the dry season (July to September) and during the dry season (September to
December).20

The EVI signal also exhibits a strong seasonality, and this signal has a similar pattern
of variation among all five different types of forests found in French Guiana (Figs. 2 and
3b). The cosinor test indicated a significant seasonality for all the EVI pixels of French
Guiana as well as for each forest type with P < 0.05 (Table 3). The amplitude of the
sinusoid is 0.03 with a phase (high point) in November and a low point in May. The25

temporal pattern represents an increase in EVI during the dry season with a maximum
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reached at the onset of the wet season (December to January) followed by a slow
decrease during the wet season.

At the onset of the dry season, EVI increased when the peak of litterfall was observed
(Fig. 3c). Peaks of EVI occurred 1 month after litterfall peak (31 days, Table 4). The
peak of litterfall occurred when global radiation was maximum (Fig. 3e), and the peaks5

of litterfall and radiation occurred in a period of less than 1 month (Table 4). During
the heart of the dry season (October to November), EVI was at its maximum and wood
production at its minimum (Fig. 3). EVI and wood production have a significant negative
cross correlation; the maximum negative correlation occurred with a lag of 1.5 months
(Table 4). Meanwhile in October to November, relative extractable water (REW), an10

index of soil water availability for tress (Wagner et al., 2010a, 2012), reached its lowest
values (Fig. 3d). As previously observed in Wagner et al. (2012), REW is highly and
directly correlated to wood production (Table 4).

At the beginning of the wet season (December to January), EVI remained high, but
wood production sharply increased to reach its maximal value in less than 2 months.15

The increase of wood production followed the trend of increasing REW in the early
wet season (Fig. 3d). Peaks of EVI and wood production showed a positive correlation
with a lag of 3.5 months (109 days, Table 4). During the rainy season (February to
June), wood production as well as EVI values slowly decreased. In July, we observed
a strong decline in wood production, while EVI started to increase. Then EVI reached its20

maximum, and the annual cycle started again. The link between wood production and
EVI exhibited a regular annual hysteresis (Fig. 4). The highest wood production was
observed for relatively high values of EVI during the early wet season. Surprisingly, EVI
showed a substantial inter-annual variability (Fig. 4).

4 Discussion25

The mean annual productivity of leaves at Paracou is 2.4±1.4 MgCha−1 yr−1 (Bonal
et al., 2008; De Weirdt et al., 2012). This value has to be compared to the mean
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biomass fluxes due to wood production at Paracou, i.e. 2.2±0.4 MgCha−1 yr−1

(Rutishauser et al., 2010; Wagner et al., 2010b). Here, we showed that these two
biomass fluxes, which have the same range in terms of C amount, occured separately
in time. In the following paragraphs, we discuss the dynamics and potential drivers of
these fluxes and of the interactions between them.5

4.1 Leaf phenology

The so-called greening of the forest observed with EVI data was related to the leaf
production but did not constitute a direct indicator of wood production (Fig. 4). At Para-
cou, as expected for an evergreen tropical forest, leaf litter is produced throughout
the year, indicating that the trees have sufficient carbon supply and adequate cli-10

mate to produce new leaves even at the beginning of the dry season when litter-
fall peaks (Fig. 3c). Leaves are an important, but often neglected, part of the short-
term forest carbon balance (Malhi and Grace, 2000). In this study, litterfall averaged
2.4±1.38 MgCha−1 yr−1 (Bonal et al., 2008; De Weirdt et al., 2012), a little more than
half of the 4.351±0.955 MgCha−1 yr−1 (Chave et al., 2010) observed, on average, for15

old-growth tropical rainforests in Amazonia. However, these values of leaf production
represent very short-term carbon pools and, contrary to wood production, cannot be
directly connected to long-term variation of the biomass stock. Indeed, all leaves pro-
duced are expected to fall after a while, and there is therefore no biomass storage in
the medium term. Recent works throughout Amazonia have estimated a large range of20

leaf residence time, from 6 to 36 months, with a lifespan distribution suggesting a pro-
nounced annual regularity. The average leaf lifespan increases from Eastern Amazon,
where leaves are typically short lived, to the evergreen Central Amazon Basin.

The ecological significance of a so-called “forest-greening” (Huete et al., 2006) in
French Guiana (Table 3) is leaf production, which mainly occurs in the dry season when25

old leaves are replaced. Recent works have highlighted that EVI was sensitive to view-
illumination effects due to the variation of the solar zenith angle during the dry season
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in a location close to Xingu Indigenous Park in Brazil, 13◦12′ 22′′ S and 52◦20′ 59′′ W
(Galvao et al., 2013; Moura et al., 2012). Nevertheless, we assume that this poten-
tial bias is reduced in our study due to a closer distance to the equator (5◦18′ N). Our
results confirm the link between intra-annual variations of EVI and field observations
of leaf phenology (Fig. 3) and suggest that most leaves are shed when new ones ap-5

pear. These variations in phenology and index of canopy photosynthetic capacity from
satellites measurements coincided with seasonal peaks in solar irradiance in Amazo-
nia (Wagner et al., 2012; Bonal et al., 2008; Huete et al., 2006; Saleska et al., 2003;
Wright and Vanschaik, 1994; Sabatier and Puig, 1986; Pennec et al., 2011; De Weirdt
et al., 2012). Even if leaf fall is important throughout the year, it reaches its maximum10

when the peak of irradiance occurs in Paracou (Bonal et al., 2008; Sabatier and Puig,
1986; Loubry, 1994). Moreover, the EVI signal is synchronous among all forest types
of French Guiana (Fig. 2), which suggests that irradiance could be the general driver
of leaf fall in French Guiana. Recently, the extreme 2005 drought in Amazonia was
suspected to impact leaf production (Saleska et al., 2007). In the end, no statistical15

correlation has been found so far between drought severity and greenness changes
(Samanta et al., 2010). The phenological consequences of long-term changes in solar
radiation or alterations in diffuse/direct components still remain an open question in
tropical forests (Lewis et al., 2004). However, we know that the frequency of drought
events should increase (Solomon et al., 2007, 2009), and as a consequence cloudi-20

ness should decrease while irradiance should increase (Nemani et al., 2003; Arias
et al., 2011). Further analysis is needed to understand the link between leaf dynamics
and climate in order to decipher if the trigger of leaf fall is the peak of irradiance, an
intrinsic biological clock, another climate driver sensitive to climate change, or all these
factors combined. The use of multiple sites with different phase between high rainfall25

and high irradiance could help disentangle physiological and climate effects on leaf and
wood production.
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4.2 Wood production

The seasonality of wood production was consistent with observations from other trop-
ical forests, even those tropical forests without any month with precipitation below
100 mm (Clark et al., 2010; Grogan and Schulze, 2012; Wagner et al., 2012; Nepstad
et al., 2002). This intra-annual seasonality cannot be considered as the sole result of5

bark shrinkage and swelling (Fig. 1). Indeed, both trees with low (1–3 mm, 71 trees) and
high (8–39 mm, 67 trees) bark thickness exhibited similar seasonal variations in wood
production, indicating that variations in cambial activity explained most of the variations
in circumference. Here, we showed that wood production presents a complex link with
the so-called “forest greening”. First, wood production decreased when EVI increased10

during the transition between the wet and the dry season (June to September). Sec-
ond, wood production increased in the early wet season, while EVI remained constant
at its highest values. Finally, wood production slowly decreased during the wet sea-
son, while EVI seriously dropped (Fig. 4). The asynchronism between leaf and wood
production could reflect a time lag in the use of carbohydrates (3.5 months, Table 4)15

synthesized during the whole year but allocated into short lived pools (leaves) in the
dry season and into long lived pools (wood) only during the wet season, as already
observed in the forest of Parque Natural Metropolitano, Panama (Wurth et al., 2005).
The time lag between peaks of EVI and wood production (109 days, Table 4) indicated
the mean time needed for leaves to become fully mature.20

Three main climate variables have been demonstrated to impact intra-annual wood
production: (i) soil water availability, (ii) irradiance, and (iii) temperature. (i) Our results
show that the highest wood production is observed after the greening in the early wet
season, when water availability is high (Fig. 3) when new leaves have just matured and
when the ecosystem photosynthetic capacity is at its maximum (Stahl et al., 2013). Soil25

water availability strongly impacts productivity as directly observed in tropical forests
(Wagner et al., 2012; Nath et al., 2006; Baker et al., 2003) and as deduced from exper-
imental forest droughts (Nepstad et al., 2002; Lola da Costa et al., 2010). (ii) Our results
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suggest that seasonal changes in radiation may exert more influence on leaf phenol-
ogy than changes in rainfall and an indirect effect on wood production (Fig. 3). This is
consistent with the results of Huete et al. (2006), which indicated a strong influence of
radiation on leaf phenology. However, our results do not support a predominant role of
radiation in forest productivity expressed as wood production (Fig. 3). Some authors5

have further suggested that high values of irradiance could drive the leaf production
cycle, as observed in seasonnal and aseasonal forests (Zalamea and Gonzalez, 2008;
Myneni et al., 2007; Hutyra et al., 2007). (iii) Correlation of wood production and tem-
perature is difficult enough to observe at our site, as temperatures remain rather high
(daily mean temperature never less than 23 ◦C) and seasonal variations in these tem-10

peratures remain rather limited (Fig. 3f). At La Selva (Clark et al., 2010), annual growth
was found to be sensitive to variations of 1–2 ◦C in mean annual night-time tempera-
ture. Investigating the effects of temperature on the physiology of tropical forest trees
(Chambers and Silver, 2004; Lloyd and Farquhar, 2008) is, today, of primary impor-
tance, given increases expected over the next century (Solomon et al., 2007; Malhi15

et al., 2009).

4.3 Does leaf production impact wood production?

Our results highlight a synchronism between old leaves falling, new leaf production
and reduced or stopped wood production (Fig. 3). A few months later (3.5 months,
Table 4), maximal wood production correlates with high value of water availability and20

high EVI signal (Fig. 3). Seasonal variations in wood production also exist even in
a very constant environment without a dry season, like in La Selva, Costa Rica (Clark
et al., 2010), supporting the idea of an annual regulation not induced by drought. In the
same way, Tapajós National Forest ecosystems maintain high transpiration and pho-
tosynthesis in the dry season while wood production declines (Verbeeck et al., 2011;25

Figueira et al., 2011). Some studies have reported that (i) evergreen species in sea-
sonally dry environments accumulate carbohydrates during the dry season because
photosynthesis continues while wood production ceases (Wurth et al., 2005) and (ii)
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deciduous species accumulate carbohydrates at the onset of the dry season to sup-
port respiration costs when they are leafless (Poorter and Kitajima, 2007; Janzen and
Wilson, 1974). Indeed, the cost of wood production is high (to produce 1 g of trunk of
Eucalyptus regnans, more than 1 g of glucose is needed Kozlowski, 1992). Contrar-
ily to wood production, the cost of new leaf production, flowering or fruiting does not5

necessarily deplete NSC pools (Wurth et al., 2005). Even species flushing and fruiting
during the dry season show high values of NSC, indicating that growth during the dry
season is not carbon limited. In temperate forests, Michelot et al. (2012) showed for
two deciduous species, Fagus sylvatica L. and Quercus petraea (Matt.) Liebl., and an
evergreen conifer, Pinus sylvestri, that the timing, duration and rate of wood production10

are related to leaf phenology and the dynamics of NSC. They found that leaf phenology,
NSC storage and intra-annual growth were clearly different between species, highlight-
ing their contrasting carbon allocation. Very recently, the seasonal dynamics and ages
of stemwood NSC in temperate forest trees has been assessed by Richardson et al.
(2013). These authors found that NSC were both highly dynamic and about a decade15

old. Their model with a two-pool structure (fast and slow cycling reserves) gave reason-
able estimates of the size and mean residence time of the total NSC pool and greatly
improved model predictions of inter-annual variability in woody biomass increment. We
should ackowledge that the existence itself of long-term and short-term cycles in NSC
are largely ignored among researchers studying tropical trees. Such ecophysiological20

approaches are urgently needed to improve our understanding of intra-annual net pri-
mary production.

5 Conclusions

Tropical forest productivity assessed either by inventory-based observations or
satellite-based studies does not rely on similar biological processes (Anderson, 2012).25

Inventory-based studies catch wood production through secondary growth, while satel-
lite studies based on EVI catch only a part of NPP related to leaf production. We pointed
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out the 3.5 month time lag between leaf production and wood production that probably
reflects the change of carbon allocation in tropical trees during the year. Some work
remains before we can understand what controls this time lag. To decipher whether
this time lag is driven by endogeneous biological or by exogeneous climate drivers,
pantropical analyses of inter-annual biomass production data coupled with EVI data5

and global climate data are needed. The use of multiple sites with different phases be-
tween high rainfall and high irradiance could enable researchers to disentangle physi-
ological and climate effects on leaf and wood production. Furthermore, some authors
have recently developed a new method for the remote estimation of chlorophyll content
and have shown that fluorescence is a direct indicator of photosynthetic activity (Meroni10

et al., 2010; Delegido et al., 2011). In the near future, these new techniques for the
study of plant status by remote sensing will be available for airborne and space-borne
sensors as well (e.g., the ESA-FLEX scientific mission European Space Agency, 2008)
and should give direct measurements of the chlorophyll content and activity. As current
IPCC scenarios predict an intensification of the dry period for the Guiana shield and15

the Amazon during the 21st century (Solomon et al., 2007, 2009; Harris et al., 2008),
further research is needed to decipher what shapes the forest productivity pattern. In
the context of global change, a response to this question is urgently needed to predict
the carbon balance of tropical forests for the next uncertain centuries.
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Table 1. Description of the climate data for the period 2007–2009.

symbol climate variable unit

pre precipitation mm
cld cloud cover %
pet potential evapotranspiration mm
tmp mean temperature ◦C
tmn minimal temperature ◦C
tmx maximal temperature ◦C
vap vapour pressure hPa
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Table 2. Model parameters, standard errors and t values of the biomass production model.

Estimate Std. Error t value Pr(> |t|)

(Intercept) 8.8610 2.4690 3.59 0.0016
pre −0.0004 0.0004 −1.05 0.3051
pet −0.0125 0.0078 −1.59 0.1244
tmp 0.7350 1.2418 0.59 0.5597
tmn −0.3149 0.6208 −0.51 0.6167
tmx −0.6439 0.6325 −1.02 0.3193
cld −0.0191 0.0072 −2.66 0.0140

vap 0.0639 0.0683 0.94 0.3593
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Table 3. Seasonality of EVI estimated with cosinor analysis for the forest types of French
Guiana.

Forest type N amplitude phase low phase P value

low dense forest/included savanna 224 0.031 Month=Dec, day=6 Month= Jun, day=7 < 0.05
high forest with regular canopy 1455 0.032 Month=Nov, day=23 Month=May, day=24 < 0.05
high forest with disrupted canopy 125 0.028 Month=Nov, day=10 Month=May, day=11 < 0.05
mixed high and open forest 916 0.035 Month=Nov, day=24 Month=May, day=25 < 0.05
open forest and Euterpe palm forest 217 0.026 Month=Nov, day=6 Month=May, day=7 < 0.05
all forest types 2937 0.032 Month=Nov, day=22 Month=May, day=23 < 0.05
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Table 4. Cross correlation between wood production (∆AGB), enhanced vegetation index (EVI),
relative extractable water (REW), leaffall, mean temperature (tmp) and global radiation (Rg).
cor+ and cor- are maximum and minimum cross correlation coefficient, IC+ and IC- their con-
fidence interval and lag cor+ and lag cor- their respective time lag corresponding to the maxi-
mum or minimum coefficient of correlation in days. If the correlation coefficient falls in the 95 %
interval, we cannot reject the null hypothesis of uncorrelated variables.

var1 var2 cor+ IC+ lag cor+ cor- IC- lag cor-

∆AGB EVI 0.71 −0.059–0.059 109.00 −0.54 −0.06–0.057 −47.00
∆AGB leaffall 0.32 −0.059–0.054 −95.00 −0.66 −0.056–0.059 29.00
∆AGB REW 0.80 −0.06–0.064 −17.00 −0.39 −0.058–0.052 121.00
∆AGB tmp 0.26 −0.051–0.052 −140.00 −0.59 −0.058–0.06 −8.00
∆AGB Rg 0.27 −0.052–0.055 −166.00 −0.56 −0.064–0.063 10.00
EVI leaffall 0.36 −0.061–0.06 31.00 −0.51 −0.061–0.06 −61.00
EVI REW 0.59 −0.057–0.054 −131.00 −0.54 −0.056–0.062 30.00
EVI tmp 0.30 −0.062–0.06 38.00 −0.45 −0.057–0.057 −127.00
EVI Rg 0.36 −0.056–0.06 48.00 −0.43 −0.057–0.061 −93.00
leaffall REW 0.41 −0.057–0.061 67.00 −0.54 −0.058–0.059 −45.00
leaffall tmp 0.41 −0.059–0.062 −46.00 −0.24 −0.06–0.054 75.00
leaffall Rg 0.36 −0.061–0.062 −20.00 −0.20 −0.064–0.059 126.00
REW tmp 0.31 −0.054–0.055 −119.00 −0.63 −0.06–0.058 0.00
REW Rg 0.28 −0.052–0.055 −124.00 −0.49 −0.06–0.063 22.00
tmp Rg 0.66 −0.056–0.06 0.00 −0.22 −0.059–0.056 182.00
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Fig. 1. Monthly variation of wood production (percentage of maximum value) for (a) the 71 trees
in the first quantile of bark thickness (1-3 mm, low thickness) and (b) the 67 trees in the last
quantile of bark thickness (8-39 mm, high thickness).

28

Fig. 1. Monthly variation of wood production (percentage of maximum value) for the 71 trees
in the first quantile of bark thickness (1–3 mm, low thickness, solid line) and the 67 trees in the
last quantile of bark thickness (8–39 mm, high thickness, dashed line).
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Fig. 2. Evolution of EVI values across French Guianan forest types. Each point reflects one
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Fig. 3. Evolution of wood production, EVI, litterfall production, relative extractable water (REW,
Wagner et al., 2010a), global radiation and mean daily temperature in the Paracou experimental
site.
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Fig. 4. Hysteresis of the correlation between wood production and EVI for the period 2007–
2009.
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